Deblish d. 5 April 2016

Published: 5 April 2016

© Author(s) 2016. CC-BY 3.0 License.

Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign

Neha Sareen¹, Annmarie G. Carlton¹, Jason D. Surratt², Avram Gold², Ben Lee³, Felipe

D. Lopez-Hilfiker^{3, a}, Claudia Mohr^{3, b}, Joel A. Thornton³, Zhenfa Zhang², Yong B. Lim¹,

^c, Barbara J. Turpin^{2*}

- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
- 2. Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
 - Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195 United
 States
 - ^a Now at Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Now at Institute of Meteorology and Climate Research, Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
 - ^c Now at Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
 - *bjturpin@email.unc.edu

25

20 Correspondence to: Neha Sareen (neha.sareen15@gmail.com)

Abstract. Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized low-volatility organic aerosol and, in some cases, light-absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols) leading to the formation of secondary organic aerosol (SOA_{AQ}). Recent studies have highlighted the role of certain precursors

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

30

35

40

45

50

55

© Author(s) 2016. CC-BY 3.0 License.

like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAO. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of watersoluble gases were scrubbed from the atmosphere into water at Brent, Alabama during the 2013 Southern Oxidant and Aerosol Study (SOAS). Hydroxyl (OH•) radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92-179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS), indicative of alcohols, carbonyl compounds, and/or epoxides. Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) spectra and tandem MS (MS/MS) fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (e.g., as salts and complexes). Thus, formation of pyruvate/oxalate suggests the potential for aqueous processing of these ambient mixtures to form SOA_{AO}.

1 Introduction

Aqueous multiphase chemistry has the potential to alter the climate-relevant properties and behavior of atmospheric aerosols. It is well established that a major pathway for secondary organic aerosol (SOA) formation is via the partitioning of semi-volatile products of gas-phase photochemical reactions into preexisting organic particulate matter (Seinfeld and Pankow, 2003). Semi-volatile partitioning theory is widely used to model SOA (Odum et al., 1996; Seinfeld and Pankow, 2003; Donahue et al., 2006). However differences between organic aerosol mass/properties predicted via

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

60

65

70

75

© Author(s) 2016. CC-BY 3.0 License.

this formation mechanism and measured in the atmosphere suggest that other processes (e.g., aqueous chemistry) may also contribute (Foley et al., 2010; Hallquist et al., 2009).

Recent studies have highlighted the importance of water-soluble organic gases (WSOGs), liquid water, and condensed-phase reactions to SOA formation and properties (Ervens et al., 2011; Monge et al., 2012; Carlton and Turpin, 2013). Biogenic and anthropogenic gas-phase precursors are oxidized to form WSOGs such as glyoxal, methylglyoxal, glycolaldehyde, and acetone (Spaulding et al., 2003). These WSOGs are too volatile to form SOA through absorptive partitioning, but they can undergo aqueous reactions in clouds, fogs, and wet aerosols to form low-volatility products and "aqueous" SOA (SOAAO) (Blando and Turpin, 2000; Ervens et al., 2004; Kroll et al., 2005; Liggio et al., 2005; Lim et al., 2005; Heald et al., 2006; Loeffler et al., 2006; Sorooshian et al., 2006; Volkamer et al., 2006; Volkamer et al., 2007; Ervens et al., 2008; De Haan et al., 2009a; El Haddad et al., 2009; Ervens et al., 2011; Rossignol et al., 2014). Inclusion of aqueous chemistry of clouds, fogs, and wet aerosols in models and experiments helps to explain SOA discrepancies, particularly high atmospheric O/C ratios, enrichment of organic aerosol aloft, and formation of oxalate, sulfur- and nitrogen-containing organics and high molecular weight compounds (Kawamura and Ikushima, 1993; Kawamura et al., 1996; Crahan et al., 2004; Kalberer et al., 2004; Herrmann et al., 2005; Altieri et al., 2006; Carlton et al., 2006; Heald et al., 2006; Volkamer et al., 2007; Nozière and Cordova, 2008; De Haan et al., 2009b; El Haddad et al., 2009; Galloway et al., 2009; Shapiro et al., 2009; Volkamer et al., 2009; Lim et al., 2010; Lin et al., 2010; Nozière et al., 2010; Perri et al., 2010; Sareen et al., 2010; Schwier et al., 2010; Sorooshian et al., 2010; Sun et al., 2010; Ervens et al., 2011; Lee et al., 2011; Tan et al., 2012; Ervens et

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

80

85

90

95

100

© Author(s) 2016. CC-BY 3.0 License.

al., 2013; He et al., 2013; Gaston et al., 2014; Ortiz-Montalvo et al., 2014). Although uncertainties are large, modeling studies show that SOA_{AQ} is comparable in magnitude to "traditional" SOA (Carlton et al., 2008; Fu et al., 2008; Fu et al., 2009; Gong et al., 2011; Myriokefalitakis et al., 2011; Liu et al., 2012; Lin et al., 2014). However, SOA_{AQ} precursors and their chemical evolution remain poorly understood.

Much of what we know about aqueous chemistry leading to SOA_{AQ} formation is derived from laboratory studies with single precursors hypothesized to be important; however, the most important precursors for SOA_{AQ} formation in the ambient environment may remain unidentified. A small number of studies conducted with ambient mixtures have provided insights into the pathways of SOA_{AQ} formation. For example, photochemical oxidation of aerosol filter samples and cloud water from Whistler, British Columbia suggest that water-soluble organic compounds of intermediate volatility (e.g. *cis*-pinonic acid) can be important precursors for SOA_{AQ} (Lee et al., 2012). Pyruvic acid oxidation experiments in Mt. Tai, China cloud water suggested a slowing of pyruvic acid oxidation presumably due to competition for OH radicals with the complex dissolved cloud water organics (Boris et al., 2014). However, further work is needed to identify precursors important for ambient SOA_{AQ} formation in atmospheric waters.

This work reports, for the first time, results of aqueous OH radical oxidation experiments conducted in ambient mixtures of water-soluble gases. Ambient mixtures were collected in the Southeast US during the Southern Oxidant and Aerosol Study (SOAS) in the summer of 2013; experiments were used to identify water-soluble gases that may serve as precursors of atmospheric aqueous SOA. This region has experienced an overall cooling trend in surface temperature over the second half of the twentieth

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

105

110

115

© Author(s) 2016. CC-BY 3.0 License.

emissions in this region with varying degrees of impact from anthropogenic sources. Measurements by Nguyen et al. (2014) and model results by Carlton and Turpin (2013) indicate the significance of (anthropogenic) aerosol liquid water (ALW) in this region and support a role for ALW in SOA_{AQ} formation. In the Southeast US, photochemistry and abundant liquid water coexist, making it an ideal location to study SOA_{AQ} formation through gas-phase followed by aqueous-phase chemistry. The objective of this work is to identify WSOGs important to SOA_{AQ} formation. Since OH oxidation experiments were

century, compared to the warming trend observed elsewhere in the US (Robinson et al.,

2002; Goldstein et al., 2009; Portmann et al., 2009). Biogenic sources dominate

conducted in dilute solution, we will also identify products expected through cloud/fog processing of ambient WSOG mixtures. Products may differ in aerosols, where solute concentrations are higher, and radical-radical chemistry and acid-catalyzed reactions (e.g. epoxide ring-opening reactions yielding tetrols and organosulfates from IEPOX) are

important. We expect that aqueous chemistry in clouds, fogs and wet aerosols is a sink for reactants identified herein, and that this work will motivate laboratory studies and

chemical modeling of newly identified aerosol/cloud precursors.

2 Methods

Samples collected in mist chambers during the SOAS field study were used to conduct controlled aqueous OH radical oxidation experiments.

2.1 Mist chamber field sampling at SOAS (in Brent, AL)

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

125

130

135

140

145

© Author(s) 2016. CC-BY 3.0 License.

Water-soluble gases were scrubbed from filtered ambient air at the Centerville ground site in Brent, AL during SOAS. Samples were collected from June 1 – July 14, 2013. Four mist chambers (Anderson et al., 2008a; Anderson et al., 2008b; Dibb et al., 1994; Hennigan et al., 2009) were operated in an air-conditioned trailer (indoor temperature, 25°C) at 25 L min⁻¹ in parallel for 4 hours, typically 2-3 times each day between 7 AM and 7 PM CDT. Particles were removed by passing the ambient air through a pre-baked quartz fiber filter (QFF) (Pall, 47mm) prior to introduction into the mist chamber. The QFF will remove particles. In the early stages of sampling, on the clean filter, adsorption of gases on the filter will reduce the concentrations of gases sampled by the mist chamber until these gases reach gas phase – adsorbed phase equilibrium. Using glyoxal as a WSOG-surrogate and the work of (Mader and Pankow, 2001) we predict that the measured WSOG in the mist chamber will be depleted for less than 2% of our sampling time (after <0.1 m³). Thus, we expect water-soluble gases to penetrate through the QFF very efficiently for collection in the mist chamber water.

The mist chambers were operated with 25 mL of 17.5 ± 0.5 M Ω ultra-pure water; additional water was added during the run to replace water lost by evaporation. Samples from all four mist chambers were composited daily and frozen in 35-40 ml (experiment-sized) aliquots. Total organic carbon (TOC) concentrations ranged from 45-180 μ M-C (Supplementary Table S1). Prior to and at the end of a sampling day, each mist chamber was cleaned using a 5-minute DI water wash step. Additionally, after the rinse step, a 2-minute dynamic blank run was conducted with activated carbon adsorbent upstream of the mist chamber to remove organic gases in the flow stream.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

150

155

160

© Author(s) 2016. CC-BY 3.0 License.

Based on daily forecast predictions, certain days were selected for intensive sampling (Supplementary Table S1). Intensive sampling during SOAS was conducted on days when high levels of isoprene, sulfate, and NO_x were predicted by the National Center for Atmospheric Research (NCAR) using the Flexible Particle dispersion model (FLEXPART) (Stohl et al., 2005) and the Model for Ozone and Related Chemical Tracers (MOZART) (Emmons et al., 2010). In general, mist chamber samples on intensive sampling days had higher organic content (TOC = 92-179 μ M-C), and hence we focused our experiments on those days (Table 1).

Two pieces of evidence suggest that gas-aqueous partitioning of the water-soluble organic gases is close to Henry's Law equilibrium in our samples. In previous testing conducted in a different East Coast location that is a recipient of long-range transport (central New Jersey) we found that WSOG concentrations in the mist chamber leveled off after 1-3 hours of ambient sampling, suggesting that the collected WSOG mixture approaches Henry's law equilibrium over these collection times. This is consistent with the one measurement we have of breakthrough at SOAS, where we ran two mist chambers in series and found TOC concentrations within +/- 11% of each other. Clearly quantification of individual species will require further work. However, these measurements suggest that the mist chamber samples contain a representative mixture of water-soluble gases.

165

2.2 Aqueous OH radical oxidation in a cuvette chamber

Ambient SOAS field samples were exposed to OH radicals in a custom built photochemical temperature-controlled (25°C) quartz cuvette reaction chamber. Ten

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

170

175

180

185

190

© Author(s) 2016. CC-BY 3.0 License.

were placed equidistant around a 254 nm mercury lamp (Heraeus Noblelight, Inc. Duluth, GA) housed in a quartz sheath (Ace Glass Inc., Vineland, NJ). A solar spectrum lamp was not used because the objective was to produce OH radicals by H_2O_2 photolysis, rather than to mimic tropospheric photolysis. The chamber was protected from ambient light by covering in aluminum foil. OH radicals $(1.25 \times 10^{-2} \, \mu M \, [OH] \, s^{-1})$ were generated in situ by photolysis of 125 $\mu M \, H_2O_2$, added to each cuvette prior to inserting the lamp. Cuvettes were removed at t=10, 20, 30, 40, 60, 80, 100, 120, 150 min and any remaining H_2O_2 was destroyed by addition of 36 μL of 1% catalase (Sigma; 40,200)

screw-capped quartz cuvettes (Spectrocell Inc., Oreland, PA) containing 3 mL of sample

The following control experiments were performed: 1) sample $+ H_2O_2$, 2) sample + UV, 3) $H_2O_2 + UV$, and 4) field water blank + OH. Replicate experiments were performed on selected samples. Ambient conditions for sample collection are given in Table 1 for samples used in experiments.

units/mg). A duplicate cuvette was removed at t=40 min to calculate method precision.

2.3 Analytical methods

Samples and field water blanks from all collection days were characterized by total organic carbon analysis (TOC; Shimadzu 5000A) and electrospray ionization mass spectrometry (ESI-MS; HP – Agilent 1100). Ion Chromatography (IC; Dionex ICS 3000) was used to analyze organic anions and track the formation of products and intermediates. Samples at each reaction time were analyzed by ESI-MS in positive and negative ion modes to identify precursors and products. Selected samples were also analyzed by ultra-high resolution electrospray ionization Fourier-transform ion cyclotron

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

195

200

205

210

© Author(s) 2016. CC-BY 3.0 License.

resonance mass spectrometry (ESI-FT-ICR-MS) and tandem MS (MS-MS) on a Thermo-

Finnigan LTO-XL at Woods Hole Oceanographic Institute, MA to determine elemental

composition and extract structural information on precursors. Analytical details and

quality control measures have been described previously (Perri et al., 2009).

Briefly, the ESI quadrupole mass spectrometer was operated in positive and

negative ion modes over a mass range of 50-1000 amu. In the negative ion mode, the

mobile phase consisted of 1:1 methanol/0.05% formic acid in water; and in the positive

ion mode, 0.05% formic acid in water. The fragmentor and capillary voltages for the ESI-

MS were set at 40 V and 3000 V (nitrogen drying gas; 10 L min⁻¹; 350 °C), respectively.

Nitrobenzoic acid in the negative ion mode and caffeine in the positive ion mode were

used as mass calibrants. Standard mixtures were analyzed with each experimental

sequence: acetic acid, pyruvic acid, nitric acid, succinic acid, tartaric acid, ammonium

sulfate, and oxalic acid in the negative ion mode and glyoxal, methylglyoxal, and

glycolaldehyde in the positive ion mode.

ESI ionization efficiency varies with sample mix and over time. However, the

mass spectra of the mist chamber samples were similar across experimental days and the

variability in the glyoxal standard ESI signal was <6% across analysis days, suggesting

that ion abundance trends will reflect concentration trends. Six injections were averaged

for each sample and data retained for each ion abundance greater than zero within 95%

confidence intervals. Ions were considered to be above detection limits if greater than the

average plus three standard deviations of the water blank.

Organic acids were measured by IC (IonPac AS11-HC column; 30 °C, AG11-HC

guard column) with conductivity detection (35 °C), using a milli-q water eluent and KOH

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

225

230

© Author(s) 2016. CC-BY 3.0 License.

215 gradient method. For oxalate, the method precision is 22%, calculated as a pooled

coefficient of variation (CV) from pairs of cuvettes removed at t=40 min. The analytical

precision for oxalate is 19% (pooled CV) based on replicate analysis of 30% of samples.

Analytical accuracy for oxalate is 7%. The limit of detection (LOD) for oxalate by this

protocol has been previously determined to be 0.1 µM (Perri et al., 2009).

220 Samples from June 15 and June 30, 2013 were analyzed using ultra-high

resolution FT-ICR-MS in the positive ion mode using 1:1 methanol/water as the mobile

phase at 4 μL min⁻¹, capillary temperature of 260 °C and spray voltage 3.8-4.2 kV.

Weekly analysis of standards (caffeine, peptide-MRFA, ultramark, SDS, and sodium

taurocholate) verified the mass accuracy < 2 ppm. Note, mass accuracy tends to decrease

with decreasing m/z, so the accuracy of masses smaller than our smallest standard (195

amu) are likely to be lower. Previously pyruvic acid and peroxyhemiacetal standards

analyzed with the same protocol were within 2 - 10 ppm. Error for masses determined by

difference between parent and fragment ions is larger. Five precursor masses were

isolated (isolation width: m/z = 2) and fragmented by collision-induced dissociation

(CID) (normalized collision energy: 26-33%) with helium in the ion trap (IT) and

infrared multi photon dissociation (IRMPD) with a CO₂ laser. Midas Molecular Formula

Calculator (v1.1) was then used on the mass of each detected peak to determine elemental

composition (within ±1 ppm) and calculate double bond equivalence (DBE). No

restrictions were placed on the number of carbon, hydrogen, oxygen, nitrogen, sodium

235 and sulfur included in the molecular formula calculations.

Compounds are detected in the ESI-MS by forming cluster ions with hydrogen,

sodium, or ammonium in the positive ion mode; compounds are sometimes hydrated with

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

240

© Author(s) 2016. CC-BY 3.0 License.

Atmospheric Chemistry and Physics

water or methanol. In the negative ion mode, ions are deprotonated. The presence of an

even or odd mass provides insight into the elemental formula of the compound. For

instance, an even mass is an indication of a nitrogen-containing compound due to the

addition of hydrogen to the odd numbered bonding of nitrogen (e.g. N + 3H + 1H_{ionization}

=18 amu).

3 Results & Discussion

OH oxidation experiments at concentrations relevant to cloud/fog water were

conducted on samples collected June 11, 12, 15, 16, 20, 21, 29, and 30 of 2013, days on

which total organic carbon (TOC) was highest, ranging from 92-179 μM-C in samples.

3.1 Precursors in SOAS samples

250

255

The concentration dynamics in experiments conducted with the 8 daily

composites were similar. Positive ions at m/z 125, 129, 143, 173, and 187 exhibited

reactant-like trends (Figure 1; June 30 sample + OH), showing decreasing signal intensity

with longer exposure to OH. All the peaks disappeared after 40 minutes of oxidation. In

control experiments the abundance of these ions did not change over time, as illustrated

in Figure 1 (sample + UV and sample + H_2O_2) for the positive ion at m/z 187 in samples

collected on June 15 and 30. Hence, reaction with UV or H₂O₂ alone does not explain the

decreasing signals in the presence of OH radical. Experiments conducted on all sample

days showed the same reactants decreasing with exposure to OH, indicating that the

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

265

270

280

© Author(s) 2016. CC-BY 3.0 License.

water-soluble organics captured from the ambient daytime air in the mist chambers varied

little across the study.

As discussed above, all precursor ions appear in the positive ion mode of the ESI-

MS, consistent with the presence of carbonyl compounds and polyols. They are odd ions,

suggesting they are likely not nitrogen-containing species. Elemental formulae assigned

to precursor ions (using Midas) and MS-MS fragmentation data for the corresponding

ions from June 15 and 30 samples are shown in Table 2. Both sampling days showed

similar fragmentation spectra, consistent with the presence of the same compounds on

both days, despite potential differences in the air mass from these days. No fragmentation

occurred for positive ions at m/z 143, 129 and 125. Proposed structures for the positive

ions at m/z 187 and 173 are shown in Figures 2 and 3. Possible structures for the other

ions are shown in Figure 5. As seen in the proposed structures, the parent compounds

contain multiple -OH groups, suggesting that they are polyols or aldehydes in the gas-

phase and are hydrated with water or methanol in our ESI-MS. The O:C ratio for the

reactant masses range from 0.1 - 0.8. In the following sections, we discuss individual

275 reactants observed in the ESI-MS.

m/z 187: This is the ion with the largest m/z we observe with the ESI-MS in the

positive ion mode that follows a precursor-like trend (Figures 1 and 2). Using the exact

mass of 187.0942 from the FT-ICR MS, the Midas molecular formula calculator gives a

formula of C₇H₁₆O₄Na, corresponding to the composition C₇H₁₆O₄ for the neutral

compound. (The discussion below is focused on the molecular formulas, rather than the

detected ions, i.e. Na⁺ or H⁺.) The daughter ion peak seen during fragmentation of the

positive ion at m/z 187 corresponds to m/z 155.0680, CH₃OH loss, corresponding to the

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

285

295

300

305

© Author(s) 2016. CC-BY 3.0 License.

molecular formula, C₆H₁₂O_{3.} We propose that this compound is present in the gas-phase

as the $C_6H_{12}O_3$ aldehyde and in water as the $C_6H_{14}O_4$ tetrol shown in Figure 2. $C_6H_{12}O_3$ is

consistent with an oxidation product of E-2-hexenal and Z-3-hexenal, both being

unsaturated aldehydes that have frequently been detected during field studies and are

emitted to the atmosphere from vegetation due to leaf wounding (O'Connor et al., 2006).

The oxidation mechanism of these two green leaf volatiles to form C₆H₁₂O₃ is shown in

Figure 3.

290 m/z 173: On most sampling days this reactant mass has the highest ion abundance

in the ESI-MS operated in positive ion mode (Supplementary Figure S1). Similar to the

other peaks, it reacts away within the first 40 minutes of exposure to OH in the cuvette

chamber (Figure 1). The Midas-suggested molecular formula for this parent ion mass

(m/z 173.0782) and its two fragment ions at m/z 141.0523 and 129.0524 are C₆H₁₄O₄,

 $C_5H_{10}O_5$, and $C_4H_{10}O_5$, respectively (a reactive parent ion with the formula $C_4H_{10}O_5$ was

also observed, and is discussed below).

A compound with a molecular formula of C₅H₁₀O₃ (the same mass as a fragment

ion discussed above) was observed in the gas-phase in the same location (Centerville

field site) by high-resolution time-of-flight chemical ionization mass spectrometry

(HRToF-CIMS) (Lee et al., 2014), coupled to a filter inlet for gases and aerosols

(FIGAERO) (Lopez-Hilfiker et al., 2015; Lopez-Hilfiker et al., 2014). This could be the

same compound that we measure as m/z 173.0782, as explained below. Note that the

HRToF-CIMS employed iodide ionization, which forms organic-iodide adducts, resulting

in a virtually fragmentation free ionization. Gas phase measurements from the HRToF-

CIMS were made in real time through a 3/4" PTFE inlet operated at 16 standard L min⁻¹.

Manuscript under review for journal Atmos. Chem. Phys.


Published: 5 April 2016

310

315

320

325

Atmospheric § Chemistry

Isoprene hydroxy hydroperoxide (ISOPOOH) and isoprene epoxide (IEPOX) are both

detected at this mass, but HRToF-CIMS is more sensitive to ISOPOOH. ISOPOOH is an

OH oxidation product of isoprene, which is further oxidized by OH under low-NO

conditions to form isomeric isoprene epoxydiols (IEPOX) (Paulot et al., 2009). Both

IEPOX and ISOPOOH are prevalent at the SOAS ground site due to the abundance of

isoprene emissions in this forested region, but it is likely that m/z 173 is not indicative of

these two compounds in our samples. As discussed below in detail, based on ESI-MS

measurements with an IEPOX standard, it can be confirmed that IEPOX was not detected

in the mist chamber samples. The O-O peroxide bond in ISOPOOH is the weakest bond

in the molecule, and hence when undergoing MS-MS, should be the first to fragment.

There is no evidence of this bond breaking in the fragmentation spectra for m/z 173,

leading to the conclusion that the detected compound is not ISOPOOH. IEPOX and

ISOPOOH were present in the ambient air at the field site. We expect that they were lost

during sampling or storage.

A likely structure for positive mode m/z 173 is shown in Figure 4. In this case the

compound is proposed to be a C₅H₁₀O₃ aldehyde in the gas phase and a C₅H₁₂O₄ tetrol in

water. In the FT-ICR-MS it is seen hydrated with methanol. The parent ion at m/z 173

loses methanol to form $C_5H_{10}O_3$ (m/z 141.0523), and it also loses C_7H_4O to form $C_4H_{10}O_3$

(m/z 129.0524). C₅H₁₀O₃ is consistent with the oxidation product of (E)-2-methyl-2-

butenal, another green leaf volatile (Figure 3c) (Jiménez et al., 2009; Lanza et al., 2008).

It has also been reported as an isoprene oxidation product (Yu et al., 1995).

Positive ions at m/z 143, 129, and 125: No fragments were observed for these

reactants with MS-MS. The Midas-predicted molecular formulae for the ions at m/z

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

330

335

340

345

350

Atmospheric § Chemistry

143.0676, 129.0520, and 125.096 are $C_5H_{12}O_3$, $C_4H_{10}O_3$, and $C_8H_{12}O$, respectively.

C₅H₁₂O₃ and C₄H₁₀O₃ were also seen in the gas phase at the Centerville field site by

HRToF-CIMS. Possible structures for these compounds based on their elemental formula

and double bond equivalents are shown in Figure 5. Interestingly, the reactant detected at

m/z 129 has the same mass as a fragment of the parent ion at m/z 173 discussed earlier

(and the structure of the $C_4H_{10}O_3$ fragment shown in Figure 4 is another possible structure

for m/z 129).

Figure S2 shows time series of ion abundance in the aqueous mist chamber samples (8-12 hr integrated samples) and gas-phase signals of compounds with corresponding molecular formulas as measured by HRToF-CIMS (Lee et al., 2014; Lopez-Hilfiker et al., 2014). There are not strong correlations, but there are similarities in trends. Note that ionization of compounds in the ESI-MS and CIMS varies with compound class and with the composition of the mixture (matrix); instrument sensitivity varies daily. In some cases, more than one isomer (with the same mass) may contribute to the observed signal and isomers with the same mass may contribute differently to the CIMS and ESI-MS signal strength (e.g., m/z 173). Also, the ESI-MS measurements were made after collection in water, whereas CIMS measurements were made in the gas phase. Thus, there are limitations to quantitative comparisons between these measurements in the absence of authentic standards. However, measurement of the same masses and the similarities in trends suggest that we may be measuring the same or similar species.

We expected IEPOX and glyoxal to be present in the samples since they were detected in the gas-phase during the SOAS campaign (Nguyen et al., 2015) (glyoxal by Keutsch group) and have relatively high Henry's Law constants, but we did not detect

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

355

360

365

370

© Author(s) 2016. CC-BY 3.0 License.

either of these compounds in our samples using our ESI-MS. Average gas-phase concentrations of IEPOX and glyoxal were measured to be ~0.09 ppb and 0.1 ppb, respectively (Nguyen et al., 2015) (glyoxal by Keutsch group), which based on their Henry's Law constants (H_{L,IEPOX}=2.7 x 10⁶ M atm⁻¹, H_{L,GLYOXAL}=3.6 x 10⁵ M atm⁻¹) correspond to ~250 μM IEPOX and 36 μM glyoxal in the aqueous phase. When the ambient samples were spiked with 3000 μM, 300 μM, and 30 μM standards of either compound, they were readily detected, indicating that they can be ionized in our sample matrix. (Authentic *trans*-β-IEPOX, which is the predominant isomer of IEPOX, was synthesized for this purpose (Zhang et al. (2012).) It is quite likely that these compounds are too unstable to persist through collection and storage in our aqueous samples. In fact, they may have oxidized during collection, since water-soluble oxidants would have also been scrubbed by the mist chambers).

3.2 Product formation during aqueous oxidation experiments

Figure 6 shows significant formation of oxalate and pyruvate in OH radical experiments conducted with all samples but not during the control experiments (Sample + UV; Sample + H₂O₂). Pyruvate peaks around 60-80 min, which is earlier than the oxalate peak at 100-120 min (Figure 6). Acetate + glycolate (which co-elute in the IC) also forms in at least some samples and reacts away in the presence of OH (Supplementary Figure S3). Sulfate and nitrate concentrations remained constant throughout the experiment as measured by the IC. While there may be many sources of oxalate, aqueous OH radical oxidation of pyruvate in the aqueous phase is known to form oxalate at dilute (cloud-

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

375

380

385

390

395

© Author(s) 2016. CC-BY 3.0 License.

relevant) concentrations (Carlton et al., 2006). Aqueous acetate oxidation is also a source of oxalate (Tan et al., 2012). The concentration dynamics are consistent with a role for these compounds in the formation of oxalate in the ambient mixtures although the mechanisms by which pyruvate and acetate formed are not well constrained in these experiments. These observations suggest that oxalate, pyruvate, and acetate can form in ambient mixtures of water-soluble gases in the Southeast US in the presence of clouds/fogs and oxidants. Pyruvate and oxalate have been observed primarily in the particle phase in the atmosphere (Saxena and Hildemann, 1996; Limbeck et al., 2001; Yao et al., 2002; Kawamura et al., 2003). Moreover, modeling studies of oxalate, the most abundant dicarboxylic acid in the atmosphere, suggest that aqueous chemistry is a large contributor of oxalate formation globally, making it a good tracer for SOAAO formed in clouds and fogs (Myriokefalitakis et al., 2011). Above versus below cloud measurements also support this (Sorooshian et al., 2010). Thus, the experiments suggest that agueous oxidation of ambient (Southeastern US) water-soluble mixtures at cloud/fog relevant concentrations has the potential to form material that remains in the particlephase species after droplet evaporation, i.e. SOAAQ. However, the atmospheric prevalence of particle-phase oxalate can only be explained by the formation of salts and complexes, since oxalic acid is volatile and the volatility of oxalate salts is orders of magnitude lower than that of oxalic acid (Ortiz-Montalvo et al., 2014; Paciga et al., 2014). The aerosol at the SOAS ground site was acidic (campaign average pH~0.94) (Guo et al., 2015) and as a consequence oxalic acid may remain largely in the gas phase in this environment, but may eventually react on more basic surfaces, e.g., coarse particles. Note that we expect the products of aqueous chemistry in wet aerosols to be

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

405

410

© Author(s) 2016. CC-BY 3.0 License.

Atmospheric Chemistry and Physics

different from those in clouds and fogs because of the extremely high (molar) solute

concentrations in wet aerosols (Surratt et al., 2007; Noziere et al., 2008; Galloway et al.,

400 2009; Lim et al., 2010; Sareen et al., 2010; Nguyen et al., 2012).

3.3 Atmospheric implications

We have tentatively characterized several water-soluble OH-reactive species

collected at an isoprene-rich photochemically-active location in the southeastern U.S. In

several cases compounds with the same elemental composition were measured in the gas

phase by HRToF-CIMS. The tentative structures for the proposed reactants are consistent

with formation from green leaf volatiles and isoprene oxidation. Aqueous OH oxidation

under dilute conditions (TOC approx. 100 µM) relevant to fogs and clouds produced

oxalate and pyruvate suggesting that cloud/fog processing of these compounds (and

subsequent neutralization or complexation) is a potential source of SOA. The reactants

characterized in this work are precursors for aqueous chemistry and are potentially

important SOA_{AQ} precursors in all atmospheric waters, i.e. clouds, fogs, and wet aerosols.

The aqueous chemistry of these precursors is poorly understood and warrants further

study.

415

4 Conclusions

We observed formation of pyruvate, oxalate, and acetate/glyocolate during OH

oxidation experiments conducted with ambient mixtures of WSOG from the southeastern

US. The formation of these highly oxygenated organic acids indicates a potential for

420 SOA_{AO} formation (e.g., upon neutralization with NH₃, metal complexation or

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

425

430

435

© Author(s) 2016. CC-BY 3.0 License.

Atmospheric §

heterogeneous reaction on course dust/salt particles). Given the acidity of SOAS fine

particles, we think it is unlikely that oxalate will be found in substantial quantities in the

fine aerosol at the SOAS ground site.

We tentatively characterized several water-soluble reactive precursors of aqueous

chemistry and SOA_{AO} formation in wet aerosols, clouds and fogs at this location. High

resolution mass spectrometric analyses suggest precursors had O:C ranging from 0.125-

0.80 and several of them could plausibly be tied to isoprene oxidation. No distinct

difference was seen in the aqueous oxidation of ambient samples collected across days

during the SOAS field campaign. Further work involving organic synthesis, aqueous OH

oxidation of authentic standards, and mass spectral analyses with pre-separation are likely

to yield further insights into the aqueous chemistry of these compounds in the future.

5 Acknowledgements

This research was funded by the EPA STAR grant 835412. The views expressed in this

manuscript are those of the authors and do not necessarily reflect the views or policies of

the U.S. Environmental Protection Agency. The authors acknowledge Melissa Soule and

funding sources of the WHOI FT-MS User's Facility (NSF OCE-0619608 and the

Gordon and Betty Moore Foundation). We also thank Jeffrey Kirland, Ronald Lauck, and

Nancy Sazo for their invaluable assistance in the laboratory and field, and Louisa

440 Emmons for the air quality forecasting during SOAS.

Supporting Information Available. Included are Table S1 and Figures S1-S3. The

material is available free of charge via the Internet at http://pubs.acs.org.

Published: 5 April 2016

© Author(s) 2016. CC-BY 3.0 License.

445 References

465

Altieri, K. E., Carlton, A. G., Lim, H.-J., Turpin, B. J., and Seitzinger, S. P.: Evidence for Oligomer Formation in Clouds: Reactions of Isoprene Oxidation Products, Environmental Science & Technology, 40, 4956-4960, 10.1021/es052170n, 2006.

Anderson, C., Dibb, J. E., Griffin, R. J., and Bergin, M. H.: Simultaneous

measurements of particulate and gas-phase water-soluble organic carbon concentrations at remote and urban-influenced locations, Geophysical Research Letters, 35, L13706, 10.1029/2008GL033966, 2008a.

Anderson, C. H., Dibb, J. E., Griffin, R. J., Hagler, G. S. W., and Bergin, M. H.: Atmospheric water-soluble organic carbon measurements at Summit, Greenland,

455 Atmospheric Environment, 42, 5612-5621,

http://dx.doi.org/10.1016/j.atmosenv.2008.03.006, 2008b.

Doi 10.1029/2005gl025374, 2006.

Blando, J. D., and Turpin, B. J.: Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility, Atmospheric Environment, 34, 1623-1632, 2000.

Boris, A. J., Desyaterik, Y., and Collett, J. L.: How do components of real cloud water affect aqueous pyruvate oxidation?, Atmos Res, 143, 95-106, DOI 10.1016/j.atmosres.2014.02.004, 2014.

Carlton, A. G., Turpin, B. J., Lim, H. J., Altieri, K. E., and Seitzinger, S.: Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds, Geophysical Research Letters, 33, Artn L06822

Published: 5 April 2016

480

© Author(s) 2016. CC-BY 3.0 License.

Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S. P., Mathur, R., Roselle, S. J., and Weber, R. J.: CMAQ Model Performance Enhanced When In-Cloud Secondary Organic Aerosol is Included: Comparisons of Organic Carbon Predictions with

470 Measurements, Environmental Science & Technology, 42, 8798-8802, 2008.

Carlton, A. G., and Turpin, B. J.: Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water, Atmos. Chem. Phys., 13, 10203-10214, 10.5194/acp-13-10203-2013, 2013.

Crahan, K. K., Hegg, D., Covert, D. S., and Jonsson, H.: An exploration of 475 aqueous oxalic acid production in the coastal marine atmosphere, Atmospheric Environment, 38, 3757-3764, http://dx.doi.org/10.1016/j.atmosenv.2004.04.009, 2004.

De Haan, D. O., Corrigan, A. L., Smith, K. W., Stroik, D. R., Turley, J. J., Lee, F. E., Tolbert, M. A., Jimenez, J. L., Cordova, K. E., and Ferrell, G. R.: Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids, Environmental Science & Technology, 43, 2818-2824, 2009a.

De Haan, D. O., Tolbert, M. A., and Jimenez, J. L.: Atmospheric condensedphase reactions of glyoxal with methylamine, Geophysical Research Letters, 36, doi:10.1029/2009GL037441, 2009b.

485 Dibb, J. E., Talbot, R. W., and Bergin, M. H.: Soluble acidic species in air and snow at Summit, Greenland, Geophysical Research Letters, 21, 1627-1630, 10.1029/94GL01031, 1994.

Published: 5 April 2016

490

505

© Author(s) 2016. CC-BY 3.0 License.

Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics, Environmental Science & Technology, 40, 2635-2643, 10.1021/es052297c, 2006.

El Haddad, I., Yao, L., Nieto-Gligorovski, L., Michaud, V., Temime-Roussel, B., Quivet, E., Marchand, N., Sellegri, K., and Monod, A.: In-cloud processes of methacrolein under simulated conditions - Part 2: Formation of secondary organic aerosol, Atmos. Chem. Phys., 9, 5107-5117, 10.5194/acp-9-5107-2009, 2009.

495 Ervens, B., Feingold, G., Frost, G. J., and Kreidenweis, S. M.: A modeling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production, Journal of Geophysical Research: Atmospheres, 109, n/a-n/a, 10.1029/2003JD004387, 2004.

Ervens, B., Carlton, A. G., Turpin, B. J., Altieri, K. E., Kreidenweis, S. M., and 500 Feingold, G.: Secondary organic aerosol yields from cloud-processing of isoprene oxidation products, Geophysical Research Letters, 35, n/a-n/a, 10.1029/2007GL031828, 2008.

Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069-11102, 10.5194/acp-11-11069-2011, 2011.

Ervens, B., Wang, Y., Eagar, J., Leaitch, W. R., Macdonald, A. M., Valsaraj, K. T., and Herckes, P.: Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets, Atmos. Chem. Phys., 13, 5117-5135, 10.5194/acp-13-5117-2013, 2013.

Published: 5 April 2016

525

© Author(s) 2016. CC-BY 3.0 License.

- Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J. E., Otte, T. L., 510 Mathur, R., Sarwar, G., Young, J. O., Gilliam, R. C., Nolte, C. G., Kelly, J. T., Gilliland, A. B., and Bash, J. O.: Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7, Geosci. Model Dev., 3, 205-226, 10.5194/gmd-3-205-2010, 2010.
- 515 Fu, T.-M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and Henze, D. K.: Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols, Journal of Geophysical Research: Atmospheres, 113, n/a-n/a, 10.1029/2007JD009505, 2008.
- Fu, T.-M., Jacob, D. J., and Heald, C. L.: Aqueous-phase reactive uptake of 520 dicarbonyls as a source of organic aerosol over eastern North America, Atmospheric Environment, 43, 1814-1822, http://dx.doi.org/10.1016/j.atmosenv.2008.12.029, 2009.
 - Galloway, M. M., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Flagan, R. C., Seinfeld, J. H., and Keutsch, F. N.: Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions, Atmos. Chem. Phys., 9, 3331-3345, 10.5194/acp-9-3331-2009, 2009.
 - Gaston, C. J., Thornton, J. A., and Ng, N. L.: Reactive uptake of N2O5 to internally mixed inorganic and organic particles: the role of organic carbon oxidation state and inferred organic phase separations, Atmos. Chem. Phys., 14, 5693-5707,
- 530 10.5194/acp-14-5693-2014, 2014.
 - Goldstein, A. H., Koven, C. D., Heald, C. L., and Fung, I. Y.: Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern

Published: 5 April 2016

540

550

© Author(s) 2016. CC-BY 3.0 License.

United States, Proceedings of the National Academy of Sciences, 106, 8835-8840, 10.1073/pnas.0904128106, 2009.

535 Gong, W., Stroud, C., and Zhang, L.: Cloud Processing of Gases and Aerosols in Air Quality Modeling, Atmosphere, 2, 567-616, 2011.

Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite Jr, J. R., Carlton, A. G., Lee, S. H., Bergin, M. H., Ng, N. L., Nenes, A., and Weber, R. J.: Fineparticle water and pH in the southeastern United States, Atmos. Chem. Phys., 15, 5211-5228, 10.5194/acp-15-5211-2015, 2015.

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., Prévôt, A.

545 S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155-5236, 10.5194/acp-9-5155-2009, 2009.

He, C., Liu, J., Carlton, A. G., Fan, S., Horowitz, L. W., Levy Ii, H., and Tao, S.: Evaluation of factors controlling global secondary organic aerosol production from cloud processes, Atmos. Chem. Phys., 13, 1913-1926, 10.5194/acp-13-1913-2013, 2013.

Heald, C. L., Jacob, D. J., Turquety, S., Hudman, R. C., Weber, R. J., Sullivan, A. P., Peltier, R. E., Atlas, E. L., de Gouw, J. A., Warneke, C., Holloway, J. S., Neuman, J. A., Flocke, F. M., and Seinfeld, J. H.: Concentrations and sources of organic carbon aerosols in the free troposphere over North America, Journal of Geophysical Research:

555 Atmospheres, 111, n/a-n/a, 10.1029/2006JD007705, 2006.

Published: 5 April 2016

565

570

© Author(s) 2016. CC-BY 3.0 License.

Hennigan, C. J., Bergin, M. H., Russell, A. G., Nenes, A., and Weber, R. J.: Gas/particle partitioning of water-soluble organic aerosol in Atlanta, Atmos. Chem. Phys., 9, 3613-3628, 10.5194/acp-9-3613-2009, 2009.

Herrmann, H., Tilgner, A., Barzaghi, P., Majdik, Z., Gligorovski, S., Poulain, L., 560 and Monod, A.: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0, Atmospheric Environment, 39, 4351-4363, http://dx.doi.org/10.1016/j.atmosenv.2005.02.016, 2005.

Jiménez, E., Lanza, B., Antiñolo, M., and Albaladejo, J.: Influence of temperature on the chemical removal of 3-methylbutanal, trans-2-methyl-2-butenal, and 3-methyl-2butenal by OH radicals in the troposphere, Atmospheric Environment, 43, 4043-4049, http://dx.doi.org/10.1016/j.atmosenv.2009.05.005, 2009.

Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A. S. H., Fisseha, R., Weingartner, E., Frankevich, V., Zenobi, R., and Baltensperger, U.: Identification of Polymers as Major Components of Atmospheric Organic Aerosols, Science, 303, 1659-1662, 10.1126/science.1092185, 2004.

Kawamura, K., and Ikushima, K.: Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere, Environmental Science & Technology, 27, 2227-2235, 10.1021/es00047a033, 1993.

Kawamura, K., Kasukabe, H., and Barrie, L. A.: Source and reaction pathways of 575 dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: One year of observations, Atmospheric Environment, 30, 1709-1722, http://dx.doi.org/10.1016/1352-2310(95)00395-9, 1996.

Published: 5 April 2016

580

590

595

© Author(s) 2016. CC-BY 3.0 License.

Kawamura, K., Umemoto, N., Mochida, M., Bertram, T., Howell, S., and Huebert, B. J.: Water-soluble dicarboxylic acids in the tropospheric aerosols collected over east Asia and western North Pacific by ACE-Asia C-130 aircraft, Journal of Geophysical Research: Atmospheres, 108, 8639, 10.1029/2002JD003256, 2003.

Kroll, J. H., Ng, N. L., Murphy, S. M., Varutbangkul, V., Flagan, R. C., and Seinfeld, J. H.: Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds, J.Geophys.Res., 110, D23207, 2005.

Lanza, B., Jiménez, E., Ballesteros, B., and Albaladejo, J.: Absorption cross section determination of biogenic C5-aldehydes in the actinic region, Chemical Physics Letters, 454, 184-189, http://dx.doi.org/10.1016/j.cplett.2008.02.020, 2008.

Lee, A. K. Y., Zhao, R., Gao, S. S., and Abbatt, J. P. D.: Aqueous-Phase OH
Oxidation of Glyoxal: Application of a Novel Analytical Approach Employing Aerosol
Mass Spectrometry and Complementary Off-Line Techniques, The Journal of Physical
Chemistry A, 115, 10517-10526, 10.1021/jp204099g, 2011.

Lee, A. K. Y., Hayden, K. L., Herckes, P., Leaitch, W. R., Liggio, J., Macdonald, A. M., and Abbatt, J. P. D.: Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing, Atmos. Chem. Phys., 12, 7103-7116, 10.5194/acp-12-7103-2012, 2012.

Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Kurtén, T., Worsnop, D. R., and Thornton, J. A.: An Iodide-Adduct High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer: Application to Atmospheric Inorganic and Organic Compounds, Environmental Science & Technology, 48, 6309-6317, 10.1021/es500362a, 2014.

Published: 5 April 2016

605

615

© Author(s) 2016. CC-BY 3.0 License.

600 Liggio, J., Li, S. M., and McLaren, R.: Heterogeneous reactions of glyoxal on particulate matter: Identification of acetals and sulfate esters, Environmental Science & Technology, 39, 1532-1541, 2005.

Lim, H.-J., Carlton, A. G., and Turpin, B. J.: Isoprene Forms Secondary Organic Aerosol through Cloud Processing: Model Simulations, Environmental Science & Technology, 39, 4441-4446, 10.1021/es048039h, 2005.

Lim, Y. B., Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J.: Aqueous chemistry and its role in secondary organic aerosol (SOA) formation, Atmos. Chem. Phys., 10, 10521-10539, 10.5194/acp-10-10521-2010, 2010.

Limbeck, A., Puxbaum, H., Otter, L., and Scholes, M. C.: Semivolatile behavior 610 of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA), Atmospheric Environment, 35, 1853-1862, http://dx.doi.org/10.1016/S1352-2310(00)00497-0, 2001.

Lin, G., Sillman, S., Penner, J. E., and Ito, A.: Global modeling of SOA: the use of different mechanisms for aqueous-phase formation, Atmos. Chem. Phys., 14, 5451-5475, 10.5194/acp-14-5451-2014, 2014.

Lin, P., Huang, X.-F., He, L.-Y., and Zhen Yu, J.: Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China, Journal of Aerosol Science, 41, 74-87, http://dx.doi.org/10.1016/j.jaerosci.2009.09.001, 2010.

Liu, J., Horowitz, L. W., Fan, S., Carlton, A. G., and Levy, H.: Global in-cloud 620 production of secondary organic aerosols: Implementation of a detailed chemical mechanism in the GFDL atmospheric model AM3, Journal of Geophysical Research: Atmospheres, 117, n/a-n/a, 10.1029/2012JD017838, 2012.

Published: 5 April 2016

625

635

640

645

© Author(s) 2016. CC-BY 3.0 License.

Loeffler, K. W., Koehler, C. A., Paul, N. M., and De Haan, D. O.: Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions, Environmental Science & Technology, 40, 6318-6323, 2006.

Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T. F., Lutz, A., Hallquist, M., Worsnop, D., and Thornton, J. A.: A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO), Atmos. Meas. Tech., 7, 983-1001,

630 10.5194/amt-7-983-2014, 2014.

3422-3432, 10.1021/es0015951, 2001.

Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T. F., Carrasquillo, A. J., Daumit, K. E., Hunter, J. F., Kroll, J. H., Worsnop, D. R., and Thornton, J. A.: Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds, Atmos. Chem. Phys., 15, 7765-7776, 10.5194/acp-15-7765-2015, 2015.

Mader, B. T., and Pankow, J. F.: Gas/Solid Partitioning of Semivolatile Organic Compounds (SOCs) to Air Filters. 3. An Analysis of Gas Adsorption Artifacts in Measurements of Atmospheric SOCs and Organic Carbon (OC) When Using Teflon Membrane Filters and Ouartz Fiber Filters, Environmental Science & Technology, 35,

Monge, M. E., Rosenørn, T., Favez, O., Müller, M., Adler, G., Abo Riziq, A., Rudich, Y., Herrmann, H., George, C., and D'Anna, B.: Alternative pathway for atmospheric particles growth, Proceedings of the National Academy of Sciences, 109, 6840-6844, 10.1073/pnas.1120593109, 2012.

Published: 5 April 2016

660

© Author(s) 2016. CC-BY 3.0 License.

Myriokefalitakis, S., Tsigaridis, K., Mihalopoulos, N., Sciare, J., Nenes, A., Kawamura, K., Segers, A., and Kanakidou, M.: In-cloud oxalate formation in the global troposphere: a 3-D modeling study, Atmos. Chem. Phys., 11, 5761-5782, 10.5194/acp-11-5761-2011, 2011.

Nguyen, T. B., Lee, P. B., Updyke, K. M., Bones, D. L., Laskin, J., Laskin, A., and Nizkorodov, S. A.: Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols, Journal of Geophysical Research: Atmospheres, 117, D01207, 10.1029/2011JD016944, 2012.

Nguyen, T. B., Crounse, J. D., Teng, A. P., St. Clair, J. M., Paulot, F., Wolfe, G.

M., and Wennberg, P. O.: Rapid deposition of oxidized biogenic compounds to a temperate forest, Proceedings of the National Academy of Sciences, 112, E392-E401, 10.1073/pnas.1418702112, 2015.

Nguyen, T. K. V., Petters, M. D., Suda, S. R., Guo, H., Weber, R. J., and Carlton, A. G.: Trends in particle-phase liquid water during the Southern Oxidant and Aerosol Study, Atmos. Chem. Phys., 14, 10911-10930, 10.5194/acp-14-10911-2014, 2014.

Noziere, B., Dziedzic, P., and Córdova, A.: Products and kinetics of the liquidphase reaction of glyoxal catalyzed by ammonium ions (NH4+), The Journal of Physical Chemistry A, 113, 231-237, 2008.

Nozière, B., and Cordova, A.: A kinetic and mechanistic study of the amino acid catalyzed aldol condensation of acetaldehyde in aqueous and salt solutions, Journal of Physical Chemistry A, 112, 2827-2837, 2008.

Published: 5 April 2016

675

. 5 April 2010

© Author(s) 2016. CC-BY 3.0 License.

Nozière, B., Ekström, S., Alsberg, T., and Holmström, S.: Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols, Geophysical Research Letters, 37, n/a-n/a, 10.1029/2009GL041683, 2010.

O'Connor, M. P., Wenger, J. C., Mellouki, A., Wirtz, K., and Munoz, A.: The atmospheric photolysis of E-2-hexenal, Z-3-hexenal and E,E-2,4-hexadienal, Physical Chemistry Chemical Physics, 8, 5236-5246, 10.1039/B611344C, 2006.

Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.: Gas/Particle Partitioning and Secondary Organic Aerosol Yields, Environmental Science & Technology, 30, 2580-2585, 10.1021/es950943+, 1996.

Ortiz-Montalvo, D. L., Häkkinen, S. A. K., Schwier, A. N., Lim, Y. B., McNeill, V. F., and Turpin, B. J.: Ammonium Addition (and Aerosol pH) Has a Dramatic Impact on the Volatility and Yield of Glyoxal Secondary Organic Aerosol, Environmental Science & Technology, 48, 255-262, 10.1021/es4035667, 2014.

Paciga, A. L., Riipinen, I., and Pandis, S. N.: Effect of Ammonia on the Volatility of Organic Diacids, Environmental Science & Technology, 48, 13769-13775, 10.1021/es5037805, 2014.

Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kurten, A., St Clair, J. M., Seinfeld, J. H., and Wennberg, P. O.: Unexpected Epoxide Formation in the Gas-Phase

Photooxidation of Isoprene, Science, 325, 730-733, DOI 10.1126/science.1172910, 2009.

Perri, M. J., Seitzinger, S., and Turpin, B. J.: Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde: Laboratory experiments, Atmospheric Environment, 43, 1487-1497, http://dx.doi.org/10.1016/j.atmosenv.2008.11.037, 2009.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 5 April 2016

695

© Author(s) 2016. CC-BY 3.0 License.

Perri, M. J., Lim, Y. B., Seitzinger, S. P., and Turpin, B. J.: Organosulfates from glycolaldehyde in aqueous aerosols and clouds: Laboratory studies, Atmospheric Environment, 44, 2658-2664, http://dx.doi.org/10.1016/j.atmosenv.2010.03.031, 2010.

Portmann, R. W., Solomon, S., and Hegerl, G. C.: Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States, Proceedings of the National Academy of Sciences, 106, 7324-7329, 10.1073/pnas.0808533106, 2009.

Robinson, W. A., Reudy, R., and Hansen, J. E.: General circulation model simulations of recent cooling in the east-central United States, Journal of Geophysical Research: Atmospheres, 107, ACL 4-1-ACL 4-14, 10.1029/2001JD001577, 2002.

Rossignol, S., Aregahegn, K. Z., Tinel, L., Fine, L., Nozière, B., and George, C.: Glyoxal Induced Atmospheric Photosensitized Chemistry Leading to Organic Aerosol Growth, Environ Sci Technol, 48, 3218-3227, 10.1021/es405581g, 2014.

Sareen, N., Schwier, A. N., Shapiro, E. L., Mitroo, D., and McNeill, V. F.:

Secondary organic material formed by methylglyoxal in aqueous aerosol mimics, Atmos.

705 Chem. Phys., 10, 997-1016, 10.5194/acp-10-997-2010, 2010.

Saxena, P., and Hildemann, L.: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J Atmos Chem, 24, 57-109, 10.1007/BF00053823, 1996.

Schwier, A. N., Sareen, N., Mitroo, D., Shapiro, E. L., and McNeill, V. F.:

Glyoxal-Methylglyoxal Cross-Reactions in Secondary Organic Aerosol Formation, Environmental Science & Technology, 44, 6174-6182, 10.1021/es101225q, 2010.

Published: 5 April 2016

720

725

730

© Author(s) 2016. CC-BY 3.0 License.

Seinfeld, J. H., and Pankow, J. F.: Organic atmospheric particulate material, Annu Rev Phys Chem, 54, 121-140, Doi 10.1146/Annurev.Physchem.54.011002.103756, 2003.

Shapiro, E. L., Szprengiel, J., Sareen, N., Jen, C. N., Giordano, M. R., and

715 McNeill, V. F.: Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics, Atmospheric Chemistry and Physics, 9, 2289-2300, 2009.

Sorooshian, A., Varutbangkul, V., Brechtel, F. J., Ervens, B., Feingold, G., Bahreini, R., Murphy, S. M., Holloway, J. S., Atlas, E. L., Buzorius, G., Jonsson, H., Flagan, R. C., and Seinfeld, J. H.: Oxalic acid in clear and cloudy atmospheres: Analysis of data from International Consortium for Atmospheric Research on Transport and

Transformation 2004, Journal of Geophysical Research: Atmospheres, 111, n/a-n/a, 10.1029/2005JD006880, 2006.

Sorooshian, A., Murphy, S. M., Hersey, S., Bahreini, R., Jonsson, H., Flagan, R. C., and Seinfeld, J. H.: Constraining the contribution of organic acids and AMS m/z 44 to the organic aerosol budget: On the importance of meteorology, aerosol hygroscopicity, and region, Geophysical Research Letters, 37, n/a-n/a, 10.1029/2010GL044951, 2010.

Spaulding, R. S., Schade, G. W., Goldstein, A. H., and Charles, M. J.: Characterization of secondary atmospheric photooxidation products: Evidence for biogenic and anthropogenic sources, Journal of Geophysical Research: Atmospheres, 108, n/a-n/a, 10.1029/2002JD002478, 2003.

Sun, Y. L., Zhang, Q., Anastasio, C., and Sun, J.: Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry, Atmos. Chem. Phys., 10, 4809-4822, 10.5194/acp-10-4809-2010, 2010.

Published: 5 April 2016

750

© Author(s) 2016. CC-BY 3.0 License.

Surratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T. E., Edney, E. O., and Seinfeld, J. H.: Effect of Acidity on Secondary Organic Aerosol Formation from Isoprene, Environmental Science & Technology, 41, 5363-5369, 10.1021/es0704176, 2007.

Tan, Y., Lim, Y. B., Altieri, K. E., Seitzinger, S. P., and Turpin, B. J.:

Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal, Atmos. Chem. Phys., 12, 801-813, 10.5194/acp-12-801-2012, 2012.

Volkamer, R., Jimenez, J. L., San Martini, F., Dzepina, K., Zhang, Q., Salcedo, D., Molina, L. T., Worsnop, D. R., and Molina, M. J.: Secondary organic aerosol

formation from anthropogenic air pollution: Rapid and higher than expected, Geophys. Res. Lett., 33, L17811, 10.1029/2006gl026899, 2006.

Volkamer, R., Martini, F. S., Molina, L. T., Salcedo, D., Jimenez, J. L., and Molina, M. J.: A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol, Geophysical Research Letters, 34, 10.1029/2007gl030752, 2007.

Volkamer, R., Ziemann, P. J., and Molina, M. J.: Secondary Organic Aerosol Formation from Acetylene (C₂H₂): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase, Atmos. Chem. Phys., 9, 1907-1928, 10.5194/acp-9-1907-2009, 2009.

Yao, X., Fang, M., and Chan, C. K.: Size distributions and formation of dicarboxylic acids in atmospheric particles, Atmospheric Environment, 36, 2099-2107, http://dx.doi.org/10.1016/S1352-2310(02)00230-3, 2002.

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-200, 2016 Manuscript under review for journal Atmos. Chem. Phys. Published: 5 April 2016 © Author(s) 2016. CC-BY 3.0 License.

Yu, J., Jeffries, H. E., and Le Lacheur, R. M.: Identifying Airborne Carbonyl
Compounds in Isoprene Atmospheric Photooxidation Products by Their PFBHA Oximes
Using Gas Chromatography/Ion Trap Mass Spectrometry, Environmental Science &
Technology, 29, 1923-1932, 10.1021/es00008a009, 1995.

Zhang, Z., Lin, Y. H., Zhang, H., Surratt, J. D., Ball, L. M., and Gold, A.:

Technical Note: Synthesis of isoprene atmospheric oxidation products: isomeric

epoxydiols and the rearrangement products cis- and trans-3-methyl-3,4-

765 dihydroxytetrahydrofuran, Atmos. Chem. Phys., 12, 8529-8535, 10.5194/acp-12-8529-2012, 2012.

Published: 5 April 2016

© Author(s) 2016. CC-BY 3.0 License.

770 **Tables & Figures**

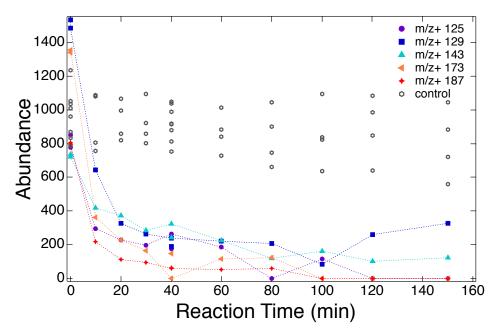
Table 1: Sample collection dates for which experiments were run and their sampling conditions. Temperature, relative humidity, and ozone ranges are shown both for the entire day and collection time period. Total organic carbon (TOC) accuracy and precision 775 are verified with potassium hydrogen phthalate (KHP) standards to be better than 5% (Perri et al., 2009).

Collection date	Collection time	μМ ТОС	T (°C) all day (coll. time)	RH (%) all day (coll. time)	O ₃ (ppb _V) all day (coll. time)
11-Jun-2013	7am-7pm	139.5	22-32 (23-32)	53-99 (53-98)	9.9-38.2 (11.3-38.2)
12-Jun-2013	7am-7pm	179.7	23-33 (23-33)	48-94 (48-94)	13.1-41.8 (13.1-41.8)
15-Jun-2013	7am-7pm	117.0	17-31 (18-31)	45-94 (45-90)	11.6-53.4 (11.6-53.4)
16-Jun-2013	7am-7pm	108.2	22-32 (22-32)	53-93 (53-84)	2.6-41.7 (23.1-41.7)
20-Jun-2013	8am-5pm	131.5	20-30 (21-30)	55-98 (59-94)	4.8-52.2 (6.2-42.8)
21-Jun-2013	10am-6pm	104.4	20-30 (25-30)	50-93 (50-78)	16.6-45.2 (30.3-45.2)
29-Jun-2013	7am-7pm	92.0	21-31 (22-31)	43-100 (43-100)	16.3-53.7 (16.3-53.7)
30-Jun-2013	7am-7pm	98.7	20-30 (20-30)	38-100 (38-100)	1-53.5 (1-53.5)

Published: 5 April 2016

© Author(s) 2016. CC-BY 3.0 License.

Table 2: Elemental formulas assigned to precursor ions using ESI-FT-ICR MS in the positive ionization mode and Midas Molecular Formula Calculator. MS/MS fragmentation data is also shown.


Precursor peak using ESI-MS	Positive mode <i>m/z</i> (using FT-ICR)	[M+Na] ⁺ or [M+H] ⁺	Mol. Wt.	Double bond equivalence
187	187.0942	C ₇ H ₁₆ O ₄ Na	164.1043	0
	155.0680	C ₆ H ₁₂ O ₃ Na	132.0786	1
173	173.0782	C ₆ H ₁₄ O ₄ Na	150.0887	0
	141.0523	C ₅ H ₁₀ O ₃ Na	118.0625	1
	129.0524	C ₄ H ₁₀ O ₃ Na	106.0625	0
143	143.0676	C ₅ H ₁₂ O ₃ Na	120.0781	0
129	129.0520	C ₄ H ₁₀ O ₃ Na	106.0625	0
125	125.096	C ₈ H ₁₃ O	124.0883	3

Published: 5 April 2016

© Author(s) 2016. CC-BY 3.0 License.

785

790

Figure 1. Positive ions (ESI-MS) exhibiting precursor-like trends during aqueous OH-radical oxidation experiments with the ambient mixtures collected on June 30. All days show similar trends, with all 5 reactant masses showing statistically significant decreasing trends as compared to the control experiments. Controls (sample + UV, sample + H_2O_2) shown for m/z 187; other masses show similar trends.

Published: 5 April 2016

© Author(s) 2016. CC-BY 3.0 License.

$$m/z+187$$

OH

HO

OCH₃ OH

 $C_7H_{16}O_4$

- CH₃OH

- 32

OH

OH

 $C_6H_{12}O_3$

OH

 $C_6H_{12}O_3$

OH

OH

OH

 $C_6H_{14}O_4$

A aqueous-phase

795 Figure 2. Proposed structure for the positive ion at m/z 187. The top structure is the parent compound detected as a reactant in the ESI-MS; the following structures show the MS/MS fragments. The respective gas-phase and aqueous-phase compounds are shown in the shaded boxes at the bottom.

© Author(s) 2016. CC-BY 3.0 License.

800 **(a)**

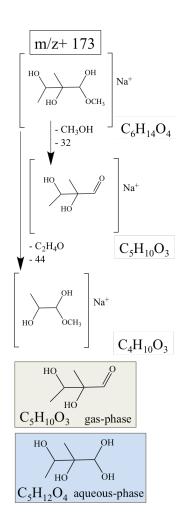
805

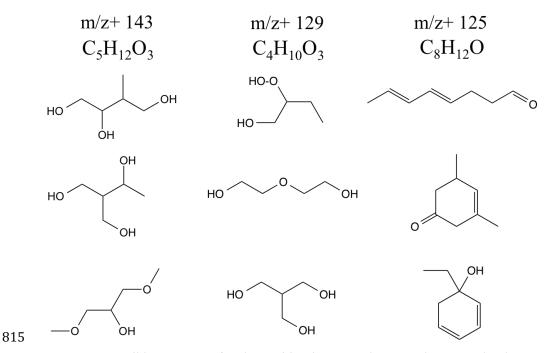
Figure 3: Gas-phase oxidation of (a) *E*-2-hexenal and (b) *Z*-3-hexenal and (c) (*E*)-2-methyl-2-butenal.

Published: 5 April 2016

810

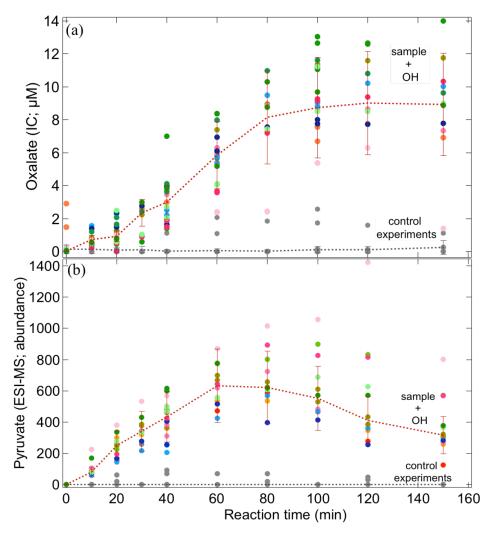
© Author(s) 2016. CC-BY 3.0 License.




Figure 4. Proposed structure for the positive ion at m/z 173. The top structures in each panel are the parent compound detected as a reactant in the ESI-MS; the following structures show the MS/MS fragments. The respective gas-phase and aqueous-phase compounds are shown in the shaded boxes at the bottom.

Published: 5 April 2016

© Author(s) 2016. CC-BY 3.0 License.


Figure 5: Possible structures for the positive ions at *m/z* 143, *m/z* 129, and *m/z* 125. These structures are based on MIDAS suggested elemental formulae for these masses and double bond equivalence (DBE). No fragmentation was observed for these reactant masses.

© Author(s) 2016. CC-BY 3.0 License.

820

Figure 6. (a) Oxalate (by IC) for all OH radical oxidation experiments conducted with ambient samples (Table 1). (b) Abundance of the negative ion at m/z 87 (pyruvate) as observed in the ESI-MS when the ambient SOAS samples are exposed to OH. Error bars represent the pooled coefficient of variation calculated across experimental days. Note that oxalate formed in all samples in the presence, but not the absence, of OH. Gray points represent control experiments (June 11 sample + UV, June 11 sample + H_2O_2 , June 30 field water blank + OH).